Copyrighted Materials

Copyright © 2006 Elsevier Retrieved from www.knovel.com

Chapter 3

Power transmission and sizing

While the previous chapters have considered the analysis of a proposed motor-drive
system and obtaining the application requirements, it must be recognised that the
system comprises a large number of mechanical component. Each of these com-
ponents, for example couplings, gearboxes and lead screws, will have their own
inertias and frictional forces, which all need to be considered as part of the sizing
process. This chapter considers power transmission components found in appli-
cations, and discusses their impact on overall system performance, and concludes
with the process required to determine the detailed specifications of the motor and
the drive.

The design parameters of the mechanical transmission system of the actuator
must be identified at the earliest possible stage. However, it must be realised that
the system will, in all probability, be subjected to detailed design changes as de-
velopment proceeds. It should also be appreciated that the selection of a motor and
its associated drive, together with their integration into a mechanical system, is by
necessity an iterative process; any solution is a compromise. For this reason, this
chapter can only give a broad outline of the procedures to be followed; the detail is
determined by the engineer’s insight into the problem, particularly for constraints
of a non-engineering nature, such as a company’s or a customer’s policy, which
may dictate that only a certain range of components or suppliers can be used.

In general, once the overall application, and the speed and torque (or in the
case of a linear motor, speed and force) requirements of the total system have
been clearly identified, various broad combinations of motors and drives can be
reviewed. The principles governing the sizing of a motor drive are largely inde-
pendent of the type of motor being considered. In brief, adequate sizing involves
determining the motor’s speed range, and determining the continuous and intermit-
tent peak torque or force which are required to allow the overall system to perform
to its specification. Once these factors have been determined, an iterative process
using the manufacturer’s specifications and data sheets will lead to as close an op-
timum solution as is possible.
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3.1 Gearboxes

As discussed in Section 2.1.3 a conventional gear train is made up of two or more
gears. There will be a change in the angular velocity and torque between an input
and output shaft; the fundamental speed relationship is given by

nexi_ yNo
Wo N;
where V; and w; are the number of teeth on, and the angular velocity of, the input
gear, and N, and w, are the number of teeth on, and the angular velocity of, the
output gear. In equation (3.1) a negative sign is used when two external gears are
meshing, Figure 3.1(a), or a positive sign indicates that system where an internal
gear is meshing with an internal gear, Figure 3.1(b).

In the case where an idler gear is included, the gear ratio can be calculated in

an identical fashion, hence for an external gear train, Figures 3.1(c) and 3.1(d),
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The direction of the output shaft is reversed for an internal gear train, Figure 3.1(d).
In practice the actual gear train can consist of either a spur, or helical gear wheels.
A spur gear (see Figure 3.2(a)) is normally employed within conventional gear
trains, and has the advantage of producing minimal axial forces which reduce prob-
lems connected with motion of the gear bearings. Helical gears (see Figure 3.2(b))
are widely used in robotic systems since they give a higher contact ratio than spur
gears for the same ratio; the penalty is axial gear load. The limiting factors in
gear transmission are the stiffness of the gear teeth, which can be maximised by
selecting the largest-diameter gear wheel which is practical for the application, and
backlash or lost motion between individual gears. The net result of these problems
is a loss in accuracy through the gear train, which can have an adverse affect on the
overall accuracy of a controlled axis.

In many applications conventional gear trains can be replaced by complete
gearboxes (in particular those of a planetary, harmonic, or cycloid design) to pro-
duce compact drives with high reduction ratios.

3.1)

3.1.1 Planetary gearbox

A Planetary gearbox is co-axial and is particularly suitable for high torque, low
speed applications. It is extremely price-competitive against other gear systems
and offers high efficiency with minimum dimensions. For similar output torques
the planetary gear system is the most compact gearbox on the market. The internal
details of a planetary gearbox are shown in Figure 3.3; a typical planetary gear box
consists of the following:

e A sun gear, which may or may not be fixed.
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(a) External gears (b) Internal gears

Wy

(c) External gear train (d) Internal gear train

Figure 3.1. Examples of the dependency of direction and velocity of the output
shaft on the type of gearing.

(a) Spur gears. (b) Helical gears.

Figure 3.2. Conventional gears.
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Outer ring ~ ]
Planet gear \:

Sun gear\ I
Planet carrier /

J E—

Figure 3.3. A planetary gearbox; the output from the gearbox is from the three
planet gears via the planet carrier, while the sun gear is driven. In this case the
outer ring is fixed, the input is via the sun, and the output via the planet carrier.

e A number of planetary gears.
e Planet gear carrier.

e An internal gear ring, which may not be used on all systems.

This design results in relatively low speeds between the individual gear wheels
and this results in a highly efficient design. One particular advantage is that
the gearbox has no bending moments generated by the transmitted torque; con-
sequently, the stiffness is considerably higher than in comparable configuration.
Also, they can be assembled coaxially with the motor, leading to a more compact
overall design. The relationship for a planetary gearbox can be shown to be (Wal-
dron and Kinzel, 1999)

Wsun — Wearrier Nring

= — 3.3)

Wring — Wearrier Ngun

where Wsyn, Wearrier and wying are the angular speeds of the sun gear, planet carrier
and ring with reference to ground. N,;,, and Ng,, are the number of teeth on
the sun and ring respectively. Given any two angular velocities, the third can be
calculated — normally the ring if fixed hence w;ny = 0. In addition it is important
to define the direction of rotation; normally clockwise is positive, and counter-
clockwise is negative.
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Example 3.1

A planetary gearbox has 200 teeth on its ring, and 40 teeth on its sun gear. The
input to the sun gear is 100 rev min—' clockwise. Determine the output speed if the
ring is fixed, or rotating at 5 rev min~" either clockwise or counterclockwise.

Rearranging equation (3.3), gives

Nounwsun — Nm’ngwring

Wearrier =
Nsun - Nring

e When the ring is rotated at 5 rev min~! clockwise, the output speed is
18.75 rev min—! conterclockwise.

e When the ring is fixed, the output speed is 25 rev min~! conterclockwise.

e When the ring is rotated at 5 rev min~!

is 31.25 rev min—! counterclockwise.

counterclockwise, the output speed

This simple example demonstrates that the output speed can be modified by chang-
ing the angular velocity of the ring, and that the direction of the ring adds or sub-
tracts angular velocity to the output.

3.1.2 Harmonic gearbox

A harmonic gearbox will provide a very high gear ratio with minimal backlash
within a compact unit. As shown in Figure 3.4(a), a harmonic drive is made up
of three main parts, the circular spline, the wave generator, and the flexible flexs-
pline. The design of these components depends on the type of gearbox, in this
example the flexispline forms a cup. The operation of an harmonic gearbox can
be appreciated by considering the circular spline to be fixed, with the teeth of the
flexspline to engage on the circular spline. The key to the operation is the dif-
ference of two teeth (see Figure 3.4(b)) between the flexspline and the circular
spline. The bearings on the elliptical-wave generator support the flexspline, while
the wave generator causes it to flex. Only a small percentage of the flexispline’s
teeth are engaged at the ends of the oval shape assumed by the flexspline while it
is rotating, so there is freedom for the flexspline to rotate by the equivalent of two
teeth relative to the circular spline during rotation of the wave generator. Because
of the large number of teeth which are in mesh at any one time, harmonic drives
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have a high torque capability; in addition the backlash is very small, being typically
less that 30" of arc.

In practice, any two of the three components that make up the gearbox can be
used as the input to, and the output from, the gearbox, giving the designer consid-
erable flexibility. The robotic hand shown in Figure incorporates three harmonic
gearboxes of a pancake design where the flexispline is a cylinder equal in width to
the wave generator.

Flexspline
An elliptical,
nonrigid,
external gear

Circular Spline
A round, rigid,
internal gear

Wave Generator
An elliptical
ball bearing assembly

(a) Components of a harmonic gearbox

180°

(b) Operation of a harmonic gear box, for each 360° rotation of the wave generator the flexspline
moves 2 teeth. The deflection of the flexspline has been exaggerated.

Figure 3.4. Construction and operation of an HDC harmonic gear box. Re-
produced with permission from Harmonic Drive Technologies, Nabtesco Inc,
Peabody, MA.
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Slow speed shaft

High speed shaft

Figure 3.5. A schematic diagram of a cycloid speed reducer. The relationship
between the eccentric, cylcoid and slow-speed output shaft is clearly visible. It
should be noted that in the diagram only one cycloid disc is shown, commercial
systems typically nave a number of discs, to improve power handelling.

3.1.3 Cycloid gearbox

The cycloid gearbox is of a co-axial design and offers high reduction ratios in a
single stage, and is noted for its high stiffness and low backlash. The gearbox is
suitable for heavy duty applications, since it has a very high shock load capability
of up to 500%. Commercially cycloid gearboxes are available in a range of sizes
with ratios between 6:1 and 120:1 and with a power transmission capability of up
to approximately 100 kW. The gearbox design, which is both highly reliable and
efficient, undertakes the speed conversion by using rolling actions, with the power
being transmitted by cycloid discs driven by an eccentric bearing.

The significant features of this type of gearbox are shown in Figure 3.5. The
gear box consists of four main components:

e A high speed shaft with an eccentric bearing.
e Cycloid disc(s).
e Ring gear housing with pins and rollers.

o Slow speed shaft with pins and rollers.

As the eccentric rotates, it rolls the cycloid disc around the inner circumfer-
ence of the ring gear housing. The resultant action is similar to that of a disc
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Linear bearing to

prevent
/ nut rotating

Screw

Nut

>
Lead

Figure 3.6. The construction of a lead screw. The screw illustrated is single start
with an ACME thread.

rolling around the inside of a ring. As the cycloid disc travels clockwise around the
gear ring, the disc turns counterclockwise on its axis. The teeth of the cycloid discs
engage successively with the pins on the fixed gear ring, thus providing the reduc-
tion in angular velocity. The cycloid disc drives the low speed output shaft. The
reduction ratio is determined by the number of ‘teeth’ on the cycloid disc, which
has one less ‘tooth’ than there are rollers on the gear ring. The number of teeth
on the cycloid disc equals the reduction ratio, as one revolution of the high speed
shaft, causes the cycloid disc to move in the opposite direction by one ‘tooth’.

3.2 Lead and ball screws

The general arrangement of a lead screw is shown in Figure 3.6. As the screw is
rotated, the nut, which is constrained from rotating, moves along the thread. The
linear speed of the load is determined by the rotational speed of the screw and
the screw’s lead. The distance moved by one turn of the lead screw is termed the
lead: this should not be confused with the pitch, which is the distance between the
threads. In the case of a single start thread, the lead is equal to the pitch; however
the pitch is smaller than the lead on a multi-start thread. In a lead screw there
is direct contact between the screw and the nut, and this leads to relatively high
friction and hence an inefficient drive. For precision applications, ball screws are
used due to their low friction and hence their good dynamic response. A ball screw
is identical in principle to a lead screw, but the power is transmitted to the nut via
ball bearings located in the thread on the nut (see Figure 3.7).

The relationship between the rotational and linear speed for both the lead and
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Tube to circulate

Ball screw n{{ /ball bearings

Linear bearing

Figure 3.7. The cross section of a high performance ball screw, the circulating
balls are clearly visible.

ball screw is given by:

T L
where N, is the rotational speed in rev min—!, V is the linear speed in m min~
and L is the lead (in metres). The inertia of the complete system is the sum of the
screw inertia J and the reflected inertia of the load J7,

Ny, (3.4)

1

Iiot = Is + I, (35)
where
Mr?
g, =8 (3.6)
2

112

Jr, =Mj, [] 3.7)
27

where M, is the load’s mass in kg, M is the screw’s mass in kg and r is the radius
of the lead screw (in metres). In addition, the static forces, both frictional and the
forces required by the load, need to be converted to a torque at the lead screw’s
input. The torque caused by external forces, FT,, will result in a torque requirement
of

LF
T, ==L (3.8)
21

and a possible torque resulting from slideway friction of
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Table 3.1. Typical efficiencies for lead and ball screws

System type Efficiency
Ball screw 0.95
Lead screw 0.90
Rolled-ball lead screw 0.80

ACME threaded lead screw 0.40

_ LMpgcost u
N 27

where 6 is the inclination of the slideway. It has been assumed so far that the
efficiency of the lead screw is one hundred per cent. In practice, losses will occur
and the torques will need to be divided by the lead-screw efficiency, ¢, see Table 3.1,
hence

Ty (3.9)

(Ty +1Tr)
€

(3.10)

Trequired =

A number of linear digital actuators are based on stepper-motor technology,
as discussed in Chapter 8, where the rotor has been modified to form the nut of
the lead screw. Energisation of the windings will cause the lead screw to move a
defined distance, which is typically in the range 0.025-0.1 mm depending on the
step angle and the lead of the lead screw. For a motor with a step angle of 6 radians,
fitted to a lead screw of lead L, the incremental linear step, S, is given by

L
S—H

=5 (3.11)

Example 3.2

Determine the speed and torque requirements for the following lead screw appli-
cation:

e The length (Ls) of a lead screw is 1 m, its radius (Rs) is 20 mm and is
manufactured from steel (p = 7850 kg m™3). The lead (L) is 6 mm rev™'.
The efficiency (€) of the lead screw is 0.85.

o The total linear mass (M) to be moved is 150 kg. The coefficient of friction
(p)between the mass and its slipway is 0.5. A 50 N linear force (F1,) is being
applied to the mass.
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o The maximum speed of the load (Vi) has to be 6 m min™" and the time (t)
the system is required to reach this speed in 1 s.

The mass of the lead screw and its inertia are calculated first:

M, R?

M, = pnR?L, = 9.97kgand J, = =1.97x 103 kgm™2

The total inertia can be calculated by adding the reflected inertia from the load to
the lead screw’s inertia:

L
Jiot = Js + My, () =2.11kgm?2
2m

The torque required to drive the load against the external and frictional forces,
allowing for the efficiency of the lead screw, is given by

ext —

1 <LFL + LMLgM

- =0.79N
€\ 2m 2m > m

The input speed required is given by

N; = % =1000rev min~ ! = 104.7rad s~ !

and the input torque to accelerate the system is given by

Ny,
En = TJtot + Te:r:t =1Nm

3.3 Belt drives

The use of a toothed belt or a chain drive is an effective method of power trans-
mission between the motor and the load, while still retaining synchronism between
the motor and the load (see Figure 3.8). The use of belts, manufactured in rubber
or plastic, offers a potential cost saving over other methods of transmission. Typ-
ical applications that incorporate belt drives include printers, ticketing machines,
robotics and scanners. In the selection of the a belt drive, careful consideration has
to be given to ensuring that positional accuracy is not compromised by selection of
an incorrect component. A belt drive can be used in one of two ways, either as a
linear drive system (for example, positioning a printer head) or as speed changer.
In a linear drive application, the rotational input speed is given by
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Figure 3.8. Synchronous belts and pulleys suitable for servo-drive applications.

)]
where D is the diameter of the driving pulley (in metres), and V7, is the required
linear speed (in m s~1). The inertia of the transmission system, .J;,;, must include
the contributions from all the rotational elements, including the idler pulleys, any
rotating load, and the belt:

(3.12)

Lt = 1, + I (3.13)

where I, is the sum of the inertias of all the rotating elements. The load and belt
inertia is given by

M D?
Iy, = 1

where the mass, M, is the sum of the linear load (if present) and the transmission-
belt masses. An external linear force applied to the belt will result in a torque at
the input drive shaft of

(3.14)

DF
2

In a linear application, the frictional force, F'r, must be carefully determined as it
will result in an additional torque

T, = (3.15)

DFy
T =57 (3.16)

If a belt drive is used as a speed changer, the output speed is a ratio of the pulley
diameters

(3.17)

n =

D
d
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and the input torque which is required to drive the load torque, 73, is given by

Tout

T = (3.18)

The inertia seen at the input to the belt drive is the sum of the inertias of the pulleys,
the belt, the idlers, and the load, taking into account the effects of the gearing ratio;
that is

it = Ty + o + 122 (3.19)
Where the inertia of the belt can be calculated from equation (3.14) and J,» is the
inertia of the driven pulley modified by the gear ratio. The drive torque which
is required can then be computed; the losses can be taken into account by using
equation (3.10).

The main selection criteria for a belt or chain is the distance, or pitch, between
the belt’s teeth (this must be identical to the value for the pulleys) and the drive
characteristics. The belt pitch and the sizes of the pulleys will directly determine
the number of teeth which are in mesh at a particular time, and hence the power
that can be transmitted. The power that has to be transmitted can be determined by
the input torque and speed. The greater the number of teeth in mesh, the greater
is the power that can be transmitted; the number of teeth in mesh on the smaller
pulley, which is the system’s limiting value, and can be determined from

1 (D —d) y Teeth on the small pulley
C 27

Teeth in mesh = |7 — 2 sin™ (3.20)

The selection of the correct belt requires detailed knowledge of the belt ma-
terial, together with the load and drive characteristics. In the manufacturer’s data
sheets, belts and chains are normally classified by their power-transmission capa-
bilities. In order to calculate the effect that the load and the drive have on the belt,
use is made of an application factor, which is determined by the load and/or drive.
Typical values of the application factors are given in Table 3.2, which are used to
determine the belt’s power rating, Ppejs, using

Py = Power requirements x application factor (3.21)
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Table 3.2. Typical application factors for belt drives

Drive characteristic
Load Smooth running  Slight shocks Moderate shocks
Smooth 1.0 1.1 1.3
Moderate shocks 1.4 1.5 1.7
Heavy shocks 1.8 1.9 2.0
Example 3.3

Determine the speed and torque requirements for the following belt drive:

o A belt drive is required to position a 100 g load. The drive consists of two
aluminium pullies (p = 2770 kgm™2), 50 mm in diameter and 12 mm thick
driving a belt weighting 20 g. The efficiency (€) of the drive is 0.95.

o The maximum speed of the load (V1) is 2 m min~' and the acceleration time
(t)is 0.1 s.

Firstly calculate the moment of inertia of the pulley

2 MPRI% -5 2
M, = pmR;tp, = 0.065 kg hence I), = g = 2x107° kgm

The reflected inertia of the belt and load is given by

MD?
I =—;

The total driven inertia can now be calculated

=7.5%x 107 kg m?

Lot = 2Jp + I, = 11.5 x 107° kg m?
The required peak input speed is

v,
N; = —L = 763 rev min~ "
piD

and hence the the torque torque requirement can be determined

1 [ IN;
Tm=< t7’> = 0.098 Nm
€
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3.4 Bearings

In the case of a rotating shaft, the most widely used method of support is by using
one or a number bearing. A considerable number of different types of bearing are
commonly available. The system selected is a function of the loads and speeds ex-
perienced by the system; for very high speed application air or magnetic bearings
are used instead of the conventional metal-on-metal, rolling contacts. When con-
sidering the dynamics of a system, the friction and inertia of individual bearings,
though small, must need to be into account.

3.4.1 Conventional bearings

The bearing arrangement of a rotating component, e.g. a shaft, generally requires
two bearings to support and locate the component radially and axially relative to
the stationary part of the machine. Depending on the application, load, running
accuracy and cost the following approaches can be considered:

e Locating and non-locating bearing arrangements.
e Adjusted bearing arrangements.

e Floating bearing arrangements.

Locating and non-locating bearing arrangements

The locating bearing at one end of the shaft provides radial support and at the same
time locates the shaft axially in both directions. It must, therefore, be fixed in
position both on the shaft and in the housing. Suitable bearings are radial bearings
which can accommodate combined loads, e.g. deep groove ball bearings. The
second bearing then provides axial location in both directions but must be mounted
with radial freedom (i.e. have a clearance fit) in its housing. The deep groove
ball bearing and a cylindrical roller bearing, shown in Figure 3.9(a), illustrate this
concept.

Adjusted bearing arrangements

In an adjusted bearing arrangements the shaft is axially located in one direction by
the one bearing and in the opposite direction by the other bearing. This type of
arrangement is referred to as cross located and is generally used on short shafts.
Suitable bearings include all types of radial bearings that can accommodate ax-
ial loads in at least one direction, for example the taper roller bearings shown in
Figure 3.9(b).
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)

Locating Nokr: Iogating
bearing earing

(a) Locating and non-locating bearing arrangement

Figure 3.9. Three approaches to supporting a rotating shaft.

(b) Adjusted bearing arrangement

(c) Floating bearing arrangements
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Table 3.3. Typical coefficients of friction for roller bearings.

Bearing types Coefficient of friction , 1
Deep grove 0.0015-0.003
Self-aligning 0.001-0.003
Needle 0.002
Cylindrical, thrust 0.004

Floating bearing arrangements

Floating bearing arrangements are also cross located and are suitable where de-
mands regarding axial location are moderate or where other components on the
shaft serve to locate it axially. Deep groove ball bearings will satisfy this arrange-
ment, Figure 3.9(c).

Bearing friction

Friction within a bearing is made up of the rolling and sliding friction in the rolling
contacts, in the contact areas between rolling elements and cage, as well as in the
guiding surfaces for the rolling elements or the cage, the properties of the lubricant
and the sliding friction of contact seals when applicable.

The friction in these bearing is either caused by the metal-to-metal contact of
the balls or rollers on the bearing cage, or by the presence of lubrication within
the bearing. The manufacturer will be able to supply complete data, but, as an
indication, the friction torque, T3, for a roller bearing can be determined using the
following generally accepted relationship

Ty, = 0.5B;duy (3.22)

where d is the shaft diameter and B; is the bearing load computed from the radial
load, F;. and the axial load, F in the bearings, given by

B = /F2+ F2 (3.23)

The value of the coefficient of friction for the bearing, 1, will be supplied by
the manufacturer; some typical values are given in Table 3.3.

The friction due to the lubrication depends on the amount of the lubricant, its
viscosity, and on the speed of the shaft. At low speeds the friction is small, but
it increases as the speed increases. If a high-viscosity grease is used rather than
an oil, the lubrication friction will be higher and this can, in extreme cases, give
rise to overheating problems. The contribution of the lubricant to the total bearing
friction can be computed using standard equations.
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Air
Shaft Bearing
housing
Air—— -— Air
Air

Figure 3.10. Cross section of an air bearing: the dimension of the airgap have been
greatly exaggerated.

3.4.2 Air bearings

Air bearings can either be of an aerostatic or an aerodynamic design. In prac-
tice aerodynamic bearings are used in turbomachinery, where speeds of up to
36 000 rev min~! in high temperature environments are typically found. In an
aerostatic air bearing, Figure 3.10, the two bearing surfaces are separated by a
thin film of pressurised air. The compressed air is supplied by a number of nozzles
in the bearing housing. The distance between the bearing surfaces is about 5 to
30 um. As the object is supported by a thin layer of air, the friction between the
shaft and its housing can be considered to be virtually zero.

The use of an air bearing gives the system designer a number of advantages
including:

e High rotational accuracy typically greater than 5 x 10~% m is achievable
and will remain constant over time as there is no wear due to the absence of
contact between the rotating shaft and the housing.

e Low frictional drag, allow high rotational speeds; shaft speed of up to
200 000 rev min~! with suitable bearings can be achieved.

e Unlimited life due to the absence of metal to metal contact, provided that the
air supply is clean.

e High stiffness which is enhanced at speed due to a lift effect.

In machine tool applications,the lack of vibration and high rotational accuracy
of an air bearing will allow surface finishes of up to 0.012 microns to be achieved.
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Figure 3.11. A Radial magnetic bearing, manufactured by SKF Magnetic Bear-
ings, Calgary, Canada.

3.4.3 Magnetic bearings

In a magnetic bearing the rotating shaft is supporting in a powerful magnetic field,
and as with the air bearing gives a number of significant advantages:

e No contact, hence no wear, between the rotating and stationary parts. As
particle generation due to wear is eliminated, magnetic bearings are suited
to clean room applications.

e Operating through a wide temperature range, typically —250°C to 220°C: for
this reason magnetic bearings are widely used in superconducting machines.

¢ A non-magnetic sheath between the stationary and rotating parts allows op-
eration in corrosive environments.

e The bearing can be submerged in process fluid under pressure or operated in
a vacuum without the need for seals.

e The frictional drag on the shaft is minimal, allowing exceptionally high
speeds.

To maintain clearance, the shaft’s position is under closed loop control by con-
trolling the strength of the magnetic field, hence a magnetic bearing requires the
following components:

e The bearing, consisting of a stator and rotor to apply electromagnetic forces
to levitate the shaft.

e A five axis position measurement system.

e Controller and associated control algorithms to control the bearing’s stator
current to maintain the shaft at a pre-defined position.
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The magnetic bearing stator has a similar construction to a brushless d.c. motor
and consists of a stack of laminations wound to form a series of north and south
poles. The current is supplied to each winding will produce an attractive force that
levitates the shaft inside the bearing. The controller controls the current applied
to the coils by monitoring the position signal from the positioning sensors in order
to keep the shaft at the desired position through out the operating range of the
machine. Usually there is 0.5 mm to 2 mm air gap between the rotor and stator
depending on the application. A magnetic bearing is shown in Figure 3.11.

In addition to operation as a bearing, the magnetic field can be used to influ-
ence the motion of the shaft and therefore have the inherent capability to precisely
control the position of the shaft to within microns and additionally to virtually
eliminate vibrations.

3.5 Couplings

The purpose of a coupling is to connect two shafts, end-to-end, to transmit power.
Depending on the application speed and power requirements a wide range of cou-
plings are commercially available, and this section summarises the couplings com-
monly found in servo type applications.

A flexible coupling is capable of compensating for minor amounts of misalign-
ment and random movement between the two shafts. Such compensation is vital
because perfect alignment of two shafts is extremely difficult and rarely attained.
The coupling will, to varying degrees, minimise the effect of misaligned shafts. If
not properly compensated a minor shaft misalignment can result in unnecessary
wear and premature replacement of other system components.

In certain cases, flexible couplings are selected for other functions. One sig-
nificant application is to provide a break point between driving and driven shafts
that will act as a mechanical fuse if a severe torque overload occurs. This assures
that the coupling will fail before something more costly breaks elsewhere along
the drive train. Another application is to use the coupling to dampen the torsional
vibration that occurs naturally in the driving and/or driven system.

Currently there are a large number of flexible couplings due to the wide range
of applications. However, in general flexible couplings fall into one of two broad
categories, elastomeric or metallic. The key advantages and limitations of the de-
signs are briefly summarised in Tables 3.4 and 3.5 to allow the user to select the
match the correct coupling to the application.

Elastomeric couplings use a non-metallic element within the coupling, through
which the power is transmitted, Figure 3.12(a). The element is manufactured from
a compliant medium (for example rubber or plastic) and can be in compression
or shear. Compression flexible couplings designs, include those based on jaw, pin
and bushing, and doughnut designs while shear couplings include tyre and sleeve
moulded elements.



CHAPTER 3. POWER TRANSMISSION AND SIZING 91

NN\

k MY

-\ Spring steel
Elastomer bellows
(a) Flexible elastomer coupling. (b) Metallic bellows coupling.

Figure 3.12. Cross sections of commonly used couplings.

Table 3.4. Summary of the key characteristics of elastomeric couplings.

Advantages Limitations

No lubrication required Difficult to balance as an assembly
Good vibrational damping and shock Not torsionally stiff

absorption

Field replaceable elastomers elements Larger than a metallic coupling of the
same torque capacity

Capable of accommodating more Poor overload torque capacity

misalignment than a metallic bellow

coupling

In practice there are two basic failure modes for elastomeric couplings. Firstly
break down can be due to fatigue from cyclic loading when hysteresis that results
in internal heat build up if the elastomer exceeds its design limits. This type of
failure can occur from either misalignment or torque beyond its capacity. Secondly
the compliant component can break down from environmental factors such as high
ambient temperatures, ultraviolet light or chemical contamination. It should be
noted that all elastomers have a limited shelf life and will in practice require re-
placement as part of maintenance programme, even if these failure conditions a
not present.

Metallic couplings transmit the torque through designs where loose fitting parts
are allowed to roll or slide against one another (for example in designs based on
gear, grid, chain) or through the flexing/bending of a membrane (typically designed
as a disc, diaphragm, beam, or bellows), Figure 3.12(b). Those with moving parts
generally are less expensive, but need to be lubricated and maintained. Their pri-
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Table 3.5. Summary of the key characteristics of metallic couplings.

Advantages Limitations

Torsionally stiff Fatigue or wear plays a major role in
failure

High temperature capability May need lubrication

Good chemical resistance possible Complex assembly may be required

Low cost per unit torque transmitted Require very careful alignment

High speed and large shaft size capa- Cannot damp vibration or absorb shock

bility

Zero backlash High electrical conductivity

mary cause of failure in a flexible metallic couplings is wear, so overloads generally
shorten the couplings life through increased wear rather than sudden failure.

3.6 Shafts

A linear rotating shaft supported on bearings can be considered to be the simplest
element in a drive system: their static and dynamic characteristics need to be con-
sidered. While it is relatively easy, in principle, to size a shaft, it can pose a number
of challenges to the designer if the shaft is particularly long or difficult to support.
In most systems the effects of transient behaviour can be neglected for the purpose
of selecting the components of the mechanical drive train, as the electrical time
constants are lower than the mechanical time constant, and therefore they can be
considered independently. While such effects are not commonly found, they must
be considered if a large-inertia load has to be driven by a relatively long shaft,
where excitation generated either by the load (for example, by compressors) or by
the drive’s power electronics needs to be considered.

3.6.1 Static behaviour of shafts

In any shaft, torque is transmitted by the distribution of shear stress over its cross-
section, where the following relationship, commonly termed the Torsion Formula,
holds

T GO 7

= 3.24

1, L r ( )
where T is the applied torque, I, is the polar moment of area, G is the shear
modulus of the material, 6 is the angle of twist, L is the length of the shaft, 7 is the
shear stress and 7 the radius of the shaft.

In addition we can use the torsion equation to determine the stiffness of a cir-

cular shaft
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T Gnrt
=—= 3.25
0 2L (3-25)
where the polar moment of area of a circular shaft is given by
4
I, = % (3.26)

Example 3.4

Determine the diameter of a steel shaft required to transmit 3000 Nm, without
exceed the shear stress of 50 MNm™" or a twist of 0.1 rad m™*. The shear modulus
for steel is approximately 80 GNm ™2,

Using equation (3.24) and equation (3.26) it is possible to calculate the minimum
radius for both the stress and twist conditions

I . 2T
T'stress = Tm;_a‘c 2= p = 33.7Tmm
max

2T L
Ttwist = Yo =922 1mm

GO~

To satisfy both constraints the shaft should not have a radius of less than 33.7 mm.

3.6.2 Transient behaviour of shafts

In most systems the effects of transient behaviour can be neglected for the purpose
of selecting the components of the mechanical drive train, because, in practice, the
electrical time constants are normally smaller than the mechanical time constant.
However, it is worth examining the effects of torque pulsations on a shaft within
a system. These can be generated either by the load (such as a compressor) or by
the drive’s power electronics. While these problems are not commonly found, they
must be considered if a large inertia load has to be driven by a relatively long shaft.

The effect can be understood by considering Figure 3.13; as the torque is trans-
mitted to the load, the shaft will twist and carry the load. The twist at the motor
end, 6,,, will be greater than the twist at the load end, 6, because of the flexibility
of the shaft; the transmitted torque will be proportional to this difference. If K is
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Coupling Shaft

—

Figure 3.13. The effect of coupling a motor to a high-inertia load via a flexible
shaft.

the shaft stiffness (Nm rad~1!), and B is the damping constant (Nm rad ~15) then
for the motor end of the shaft

Ty = I;n520, + Bs(0, — 01) + K(6,, — 01) (3.27)

and at the load end the torque will turn the load in the same direction as the motor,
hence

Bs(0m — 01) + K (0, — 01) = Ln8%0m, + T, (3.28)

where s is the differential operator, d/d¢. If these equations are solved it can be
shown that the undamped natural frequency of the system is given by

K K
o=\ T+ (3.29)

wo = /1 — (2 (3.30)

2 | B (1 1
¢ —\/2\@ (Im+IL> (3.31)

and the damped oscillation frequency is given by
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B2 /1 1
S i 3.32
wn \/ iR (Im+IL) (3-32)

In order to produce a stable system, the damped oscillation frequency must be
significantly different to any torque pulsation frequencies produced by the system.

3.7 Linear drives

For many high performance linear applications, including robotic or similar high
performance applications, the use of leadscrews, timing belts or rack and pinions
driven by rotary motors, are not acceptable due to constrains imposed by backlash
and limited acceleration. The use of a linear three phase brushless motor (Sec-
tion 6.3) or the Piezoelectric motor (Section 9.3), provides a highly satisfactory so-
lution to many motion control problems. If the required application requires only
a small high-speed displacement, the voice coil (Section 9.1) can be considered.

The following advantages are apparent when a linear actuator is compared to
conventional system based on a driving a belt or leadscrew:

e When compared to a belt and pulley system, a linear motor removes the
problems associated with the compliance in the belt. The compliance will
causes vibration when the load comes to rest, and this limits the speed and
acceleration of a belt drive. It should be noted that a high performance belt
drive can have a repeatability error in excess of 50 pm.

e As there are no moving parts are in contact, a linear motor has significant
advantages over ball and leadscrew drives due to the removal of errors causes
by wear on the nut and screw and e to friction, which is common if the drive
has a high duty cycle. Even with the use of a high performance ballscrew the
wear may become significant for certain application over time.

o As the length of a leadscrew or ballscrew is increased, so its maximum oper-
ating speed is limited, due to the flexibility of the shaft leading to vibration,
particularly if a resonant frequency is hit — this is magnified as the length
of the shaft increases. While the speed of the shaft can be decreased, by
increasing the pitch, the system’s resolution is compromised.

While the linear motor does provide a suitable solution for many applications, it is
not inherently suitable for vertical operation, largely due to the problems associated
with providing a fail-safe brake. In addition it is more difficult to seal against en-
vironmental problems compared with a rotary system, leading to restrictions when
the environment is particularly hostile, for example when there is excessive abra-
sive dust or liquid present. Even with these issues, linear motors are widely used
is many applications, including high speed robotics and other high performance
positioning systems.
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3.8 Review of motor-drive sizing

This chapter has so far discussed the power transmission elements of a drive sys-
tem, while Chapter 2 has looked at issues related to the determination of a drive’s
requirements. This concluding section provides an overview of how this infor-
mation is brought together, and the size of the motor and its associated drive are
identified. The objective of the sizing procedure is to determine the required output
speed and torque of the motor and hence to allow a required system to be selected.
The process is normally started once the mechanical transmission system has been
fully identified and quantified.

The main constraints that have to be considered during the sizing procedure
when a conventional motor is being used can be summarised as follows:

e The peak torque required by the application must be less than both the peak
stall torque of the motor and the motor’s peak torque using the selected drive.

e The root-mean-square (r.m.s.) torque required by the application must be
less than both the continuous torque rating of the motor and the continuous
torque which can be delivered by the motor with the specified drive system.

e The maximum speed required by the application must be no greater than
approximately eighty per cent of the maximum no-load speed of the motor
drive combination; this allows for voltage fluctuations in the supply to the
drive system.

e The motor’s speed-torque characteristics must not be violated; in addition
with a direct current (d.c.) brushed motor, the commutation characteristics
of the motor must not be exceeded.

It should be noted that if a linear motor is used in an application the same set of
constraints need to be considered, however force is considered to be the main driver
as opposed to torque in the sizing process.

The operating regimes of the motor and its associated controller must be con-
sidered; two types of duty can be identified. The main determining factor is a
comparison of the time spent accelerating and decelerating the load with the time
spent at constant speed. In a continuous duty application the time spent accelerat-
ing and decelerating is not critical to the application, hence the maximum required
torque (the external-load torque plus the drive-train’s friction torque) needs to be
provided on a continuous basis; the peak torque and the r.m.s. torque requirements
are not significantly different to that of the continuous torque. The motor and the
controller are therefore selected primarily by considering the maximum-speed and
continuous-torque requirements.

An intermittent-duty application is defined as an application where the accel-
eration and deceleration of the load form a significant part of the motor’s duty
cycle. In this case the total system inertia, including the motor inertia, must be
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Table 3.6. Typical d.c brushed motor motor data. All motors are rated for a maxi-
mum speed of 5000 rev min—! at terminal voltage of 95 V.

Type | Continuous Peak Moment Voltage Current
stall torque: | torque: Nm | of inertia: | constant: constant:
Nm kg m 2 Vsrad ! | NmA~!

Ml 0.5 2.0 1.7x107* | 0.18 0.18

M2 |07 4.0 2.8x 107 | 0.18 0.18

M3 1.2 8.0 6.0 x 107% | 0.18 0.18

Table 3.7. Typical current data (in amps) supplied by manufacturers, for drives
capable of driving d.c. brushed motor. All the drives are capable of supplied the
95 V required for the motors detailed in Table 3.6.

Type | Continuous current | Peak current
Dl 5 10
D2 10 20
D3 14 20

considered when the acceleration torque is being determined. Thus, the accelera-
tion torque plus the friction torque, and any continuous load torque present during
acceleration, must be exceeded by the peak-torque capability of the motor-drive
package. Additionally, the drive’s continuous torque capability must exceed the
required r.m.s. torque resulting from the worst-case positioning move.

The difference between these two application regimes can be illustrated by
considering a lathe, shown in Figure 1.2. The spindle drive of a lathe can be con-
sidered to be a continuous-duty application since it runs at a constant speed under
a constant load, while the axis drives are intermittent-duty applications because the
acceleration and deceleration required to follow the tool path are critical selection
factors.

The confirmation of suitable motor-drive combinations can be undertaken by
the inspection of the supplier’s motor-drive performance data, which provides in-
formation on the maximum no-load speed and on the continuous torque capability,
together with the torque sensitivity of various motor frame sizes and windings.
Tables 3.6 and 3.7 contain information extracted from typical manufacturer’s data
sheets relating to d.c brushed motors and drives, for a more detailed discussion see
Chapter 5. In the sizing process it is normal to initially consider only a small num-
ber of the key electrical and mechanical parameters. If significant problems with
motor and drive selection are experienced, a detailed discussion with the suppliers
will normally resolve the problem.

As discussed above, two operating regimes can be identified: the following key
features can be summarised as
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e In a continuous duty application the acceleration and deceleration require-
ments are not considered critical; the motor and the controller can be satis-
factorily selected by considering the maximum-speed and continuous-torque
requirements.

o An intermittent-duty application is defined as an application where the ac-
celeration and deceleration of the load form a significant part of the motor’s
duty cycle, and need to be considered during the sizing process.

3.8.1 Continuous duty

For continuous duty, where the acceleration performance is not of critical impor-
tance, the following approach can be used:

e Knowledge of the required speed range of the load, and an initial estimation
of the gear ratios required, will permit the peak motor speed to be estimated.
In order to prevent the motor from not reaching its required speed, due to
fluctuations of the supply voltage, the maximum required speed should be
increased by a factor of 1.2. It should be noted that this factor is satisfactory
for most industrial applications, but it may be refined for special applications,
for example, when the system has to operate from a restricted supply as is
found in aircraft and offshore-oil platforms.

e Using the drive and the motor manufacturers’ data sheet, it will be possible
to locate a range of motors that meets the speed requirement when the drive
operates at the specified supply voltage. If the speed range is not achievable,
the gear ratio should be revised.

e From the motor’s data, it will normally be possible to locate a motor-drive
that meets the torque requirement; this will also allow the current rating of
the drive to be determined. A check should then be undertaken to ensure
that the selected system can accelerate the load to its required speed in an
acceptable time.

Example 3.5

Determine the motor’s speed and torque requirement for the system detailed below,
and hence identify a suitable motor and associated drive:

o The maximum load speed 300 rev min~", a non-optimal gearbox with a ratio

of 10:1 has been selected. The gearbox’s moment of inertia referred to its
input shaft is 3 x 10~* kgm?.
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e The load’s moment of inertia has been determined to 5 x 1072 kgm?

o The maximum load torque is 8 Nm.

Based on this information the minimum motor speed required can be determined
including an allowance for voltage fluctuations

Motor speed = 300 x gear ratio x 1.2 = 3600 rev min~!

8
Continuous torque = 0~ 0.8 Nm

Consideration of the motor data given in Table 3.6 indicates that motor M3 is capa-
ble of meeting the requirements. The required speed is below the peak motor speed
of 5000 rev min ~! & 10%, and the required torque is below the motor’s continu-
ous torque rating. At the continuously torque demand the motor requires 4.5A,
hence the most suitable drive from those detailed in Table 3.7, will be drive D1.

To ensure that the motor-drive combination is acceptable, the acceleration can
be determined for the drives peak output of 10 A. At this current the torque gener-
ated by the motor is 1.8 Nm, well within the motor rating. Using equation (2.12),
and noting that the gearbox’s moment of inertia is added to that of the motor to
give:

Tpeak_TL/n 18—8/10
o= =
n(lg+ In/n?) 1009 x 104 1 5 x 10-2/102)

—71.4rads™!

Hence the load will be accelerated to a peak speed of 300 rev min—!, within 0.5
seconds, which is satisfactory. In practice the acceleration rate would be controlled,
so that the system, it particular the gear teeth, would not experience significant
shock loads.

3.8.2 Intermittent duty

When the acceleration performance is all important, the motor inertia must be con-
sidered, and the torque which is necessary to accelerate the total inertia must be
determined early in the sizing process. A suitable algorithm is as follows:

e Using the application requirements and the required speed profile determine
the required speeds and acceleration.

e Estimate the minimum motor torque for the application using equation 2.1.
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e Select a motor-drive combination with a peak torque capability of at least
1.5 to 2 times the minimum motor-torque requirement to ensure a sufficient
torque capability.

e Recalculate the acceleration torque required, this time including the inertia
of the motor which has been selected.

e The peak torque of the motor-drive combination must exceed, by a safe mar-
gin of at least fifteen per cent, the sum of the estimated friction torque and
the acceleration torque and any continuous torque loading which is present
during acceleration. If this is not achievable, a different motor or gear ratio
will be required.

e The motor’s root-mean-square (r.m.s.) torque requirement can then be cal-
culated as a weighted time average, using;

Tyms < Tom + 4/ T} +d1I7 (3.33)

where T¢p, is the continuous motor-torque requirement, 7' is the friction
torque at the motor, Ty, is the acceleration torque, and d is the duty cycle.

e The selected motor-drive combination is evaluated for maximum speed and
continuous torque capabilities as in Section 3.8.1.

o If no motor of a given size can meet all the constraints, then a different, usu-
ally larger, frame must be considered, and the procedure must be repeated.

In practice, it is usual for one or two iterations to be undertaken in order find an
acceptable motor-drive combination. The approximate r.m.s.-torque equation used
above not only simplifies computation, but it also allows an easy examination of the
effects of varying the acceleration/deceleration duty cycle. For example, the effects
of changes in the dwell time on the value of r.m.s. torque can be immediately
identified. Should no cost-effective motor-drive be identified, the effects of varying
the speed-reduction ratio and inertias can easily be studied by trying alternative
values and sizing the reconfigured system.

Sometimes, repeated selections of motors and drives will not yield a satisfac-
tory result; in particular, no combination is able to simultaneously deliver the speed
and the continuous torque which is required by the application, or to simulta-
neously deliver the peak torque and the r.m.s. torque required. In certain cases
motor-drive combinations can be identified, but the size or cost of the equipment
may appear to be too high for the application, and changes will again be required.
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Example 3.6

ldentify a suitable motor and its associated drive for the application detailed be-
low:

e The load is a rotary disc which has a moment of inertia of 1.34 kgm?®. The
estimated frictional torque referred to the table’s drive input is 5 Nm, and
the external load torque is 8 Nm.

e The table is driven through a 20:1 gear box, which has a moment of inertia
of 3 x 10~* kgm? referred to its input shaft.

o The table is required to index 90.0° (0) in one second (t,,), and then dwell
for a further two seconds. A polynomial speed profile is required.

The selection process starts with the determination of the peak load speed and
acceleration, using equation 2.28, the maximum speed occurs at ¢ = 0.5 s and
maximum acceleration occurs att = 0 s.

66t 60t2

0(0.5) = 2 + e 71rads!
0
6(0) —5)2 =9.4rads?

The peak torque can now be calculated, at the input to the table. The torque is
determined by the peak acceleration, and the load and friction torques, giving

Typeak = 8+ 5+ 1.34 X 9.4 = 25.6 Nm

This equates to 1.28 Nm peak torque from the motor. Using the motors defined
in Table 3.6, it appears that motor M1 is a suitable candidate as it is capable of
supplying over four times the required torque. If the motor’s moment of inertia is
now included in the calculation, the peak torque requirement is

25.6
Tpeat = 5o~ + (3x 107" 4+ 1.7 x 107%) x (9.4 x 20) = 1.37 Nm

which is well within the capabilities of the motor and drive D1, detailed in Ta-
ble 3.7. The required peak current is 7 amps. The r.m.s. torque can now be calcu-
lated using equation (3.33):

Trms < Tom + 4 /T]% +dT? = 0.67 Nm
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This figure is in excess of the continuous torque rating of the motor M1, and in
certain applications could lead to the motor overheating. In addition, while the
current is below the peak rating it it is greater than the continuous rating: in practice
this could result in the drive cutting-out due to motor overheating. Thus a case can
be made to change the motor and drive — in practice this decision would be made
after careful consideration of the application.

If motor M2 is selected, and the above calculations are repeated, the motor’s
torque requirement becomes 1.4Nm, and the r.m.s torque becomes 0.69Nm. While
marginal, M2 can be used along as the friction or load torque do not increase, if
the drive is also changed to D2 there is no possibility of any overheating problems
in the system.

As a final check the motor’s peak speed is determined to be 1350 rev min™*;
this is well within the specification of the selected motor and drive.

This short example illustrates how a motor and drive can be selected, how-
ever the final decision needs a full understanding of the drive and its application.
If the application only requires a few indexing moves, the selection of motor M1
could be justified however if a considerable number of indexes are required, motor
M2 could be the better selection. This example has only considered the informa-
tion given above; in practice the final decision will be influenced on the technical
requirements of the complete process, and commercial requirements. While this
example has been undertaken for a d.c. brushed motor, the same procedure is fol-
lowed for any other type of drive — the only differences being the interpretation of
the motor and drive specifications.

3.8.3 Inability to meet both the speed and the torque requirements

In the selection of motors, the limitations of both the motor and the drive forces a
trade-off between the speed and the torque capabilities. Thus, it is usually advanta-
geous to examine whether some alteration in the mechanical elements may improve
the overall cost effectiveness of the application. Usually the speed-reduction ratios
used in the application are the simplest mechanical parameter which can be investi-
gated. If the speed required of the motor is high, but the torque seems manageable,
a reduction in the gear ratio may solve the problem. If the torque required seems
high but additional speed is obtainable, then the gear ratio should be increased. The
goal is to use the smallest motor-drive combination that exceeds both the speed and
torque requirement by a minimum of ten to twenty per cent. Sometimes the simple
changing of a gear or pulley size may enable a suitable system to be selected.

A further problem may be the inability to select a drive that meets both the
peak- and the continuous- torque requirements. This is particularly common in
intermittent-motion applications. Often, the peak torque is achievable but the drive
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is unable to supply the continuous current required by the motor. As has been
shown earlier, while optimum power transfer occurs when the motor’s rotor and
the reflected load inertia are equal this may not give the optimum performance for
an intermittent drive, hence the gear ratios in the system need to be modified and
the sizing process repeated.

Example 3.7

Consider Example 3.6 above, and consider the impact of performance due to a
change in the reduction ratio.

In Example 3.6 the speed and torque requirements, using motor M1, were calcu-
lated to be 1.35 Nm and 1350 rev min~!. The speed requirement is well within the
motor specifications. If the gear ratio was changed to 40:1, the motor’s peak speed
requirement increases to 2700 rev min~—! and the r.m.s. torque drops to 0.35 Nm,
and a peak torque of 0.818 Nm. These figures are well within the specification of
motor M1 and drive D1.

This example illustrates a different approach to resolving the sizing problem
encountered earlier. The change in gear ratio can easily be achieved at the design
state, and in all possibility be cheaper that going to a larger motor and drive system.

3.8.4 Linear motor sizing

So far in this section we have considered the sizing of conventional rotary motors.
We will now consider the sizing of a linear motor. Due to the simplicity of a linear
drive, the process is straightforward compared to combining a leadscrew, ballscrew
or belt drive with a conventional motor. As with all other sizing exercises, the
initial process is to identify the key parameters, before undertaking the detailed
sizing process. A suitable algorithm is as follows:

e Using the application requirements and the required speed profile determine
the required speed and acceleration.

e Estimate the minimum motor force for the application using equation 2.2.

e Select a motor-drive combination with a peak force capability of at least 1.5
to 2 times the minimum force requirement to ensure a sufficient capability.
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Recalculate the acceleration force required, this time including the mass of
the moving part of the selected motor.

The peak force of the motor-drive combination must exceed, by a safe mar-
gin of at least fifteen per cent, the sum of the estimated friction force and the
acceleration force and any continuous force which is present during acceler-
ation. If this is not achievable, a different motor will be required.

The motor’s root-mean-square (r.m.s.) torque requirement can then be cal-
culated as a weighted time average, in addition this will allow the motor’s
temperature to be estimated.

Example 3.8

Determine the size of the linear motor, and drive required to move a mass of My =
40 kg, a distance of d = 750 mm in time of t,, = 400 ms.

The system has a dwell time of t; = 300 ms, before the cycle repeats.

Assume that the speed profile is triangular, and equal times are spent accel-
erating, decelerating and at constant speed.

Assume the frictional force, Fy = 3N.

The motors’s parameters are: force constant is Krp = 40N A1, back emf
constant Koy = 50 Vm™'s, winding resistance, Rt,, = 2 Q and thermal
resistance of the coil assembly, Rt._, = 0.15 °CW 1,

The acceleration and peak speed can be determined using the process determined
in Section 2.4, hence

and

3d
P=—=24ms !
2%,
=% o8 8ms?
tm,

The acceleration force required is given by

F,=Mpi+F;=1155N

This now allows the calculation of the root mean square force requirement
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. 2t F2 + th]% 6355 N
rms — tm + td —_— .

The drives current and voltage requirements can therefore be calculated

Vdrive = x.Kemf + Ipeaka =178V

F,

Lyeak = K—; =28.8A
Frms
Kp

As linear motors are normally restricted to temperature rises of less that 100°C, the
temperature rise over ambient needs to be calculated

=1509A

Icontinuous =

Trise = I2

continuous

RyRt._, =T76°C

3.9 Summary

This chapter has reviewed the characteristics of the main mechanical power trans-
mission components commonly used in the construction of a drive system, together
with their impact on the selection of the overall drive package. The chapter con-
cluded by discussing the approach to sizing drives. One of the key points to be
noted is that the motor-drive package must be able to supply torques and speed
which ensure that the required motion profile can be followed. To assist with the
determination of the required values, a sizing procedure was presented. It should
be remembered over-sizing a drive is as under-sizing.
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